WORST_CASE(?,O(n^2)) * Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {app,goal,naiverev,notEmpty} and constructors {Cons,False ,Nil,True} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) app#(Nil(),ys) -> c_2() goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,5,6,7} by application of Pre({2,5,6,7}) = {1,3,4}. Here rules are labelled as follows: 1: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) 2: app#(Nil(),ys) -> c_2() 3: goal#(xs) -> c_3(naiverev#(xs)) 4: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) 5: naiverev#(Nil()) -> c_5() 6: notEmpty#(Cons(x,xs)) -> c_6() 7: notEmpty#(Nil()) -> c_7() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak DPs: app#(Nil(),ys) -> c_2() naiverev#(Nil()) -> c_5() notEmpty#(Cons(x,xs)) -> c_6() notEmpty#(Nil()) -> c_7() - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Nil(),ys) -> c_2():4 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:S:goal#(xs) -> c_3(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 naiverev#(Nil()) -> c_5():5 3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Nil()) -> c_5():5 -->_1 app#(Nil(),ys) -> c_2():4 -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 4:W:app#(Nil(),ys) -> c_2() 5:W:naiverev#(Nil()) -> c_5() 6:W:notEmpty#(Cons(x,xs)) -> c_6() 7:W:notEmpty#(Nil()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: notEmpty#(Nil()) -> c_7() 6: notEmpty#(Cons(x,xs)) -> c_6() 5: naiverev#(Nil()) -> c_5() 4: app#(Nil(),ys) -> c_2() * Step 4: RemoveHeads WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) goal#(xs) -> c_3(naiverev#(xs)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 2:S:goal#(xs) -> c_3(naiverev#(xs)) -->_1 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 3:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):3 -->_1 app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(xs) -> c_3(naiverev#(xs)))] * Step 5: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys goal(xs) -> naiverev(xs) naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) * Step 6: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) and a lower component app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) Further, following extension rules are added to the lower component. naiverev#(Cons(x,xs)) -> app#(naiverev(xs),Cons(x,Nil())) naiverev#(Cons(x,xs)) -> naiverev#(xs) ** Step 6.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)) -->_2 naiverev#(Cons(x,xs)) -> c_4(app#(naiverev(xs),Cons(x,Nil())),naiverev#(xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) ** Step 6.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) ** Step 6.a:3: Ara WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1} + Details: Signatures used: ---------------- Cons :: ["A"(0) x "A"(1)] -(1)-> "A"(1) naiverev# :: ["A"(1)] -(15)-> "A"(0) c_4 :: ["A"(0)] -(0)-> "A"(14) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- "Cons_A" :: ["A"(0) x "A"(1)] -(1)-> "A"(1) "c_4_A" :: ["A"(0)] -(0)-> "A"(1) Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: naiverev#(Cons(x,xs)) -> c_4(naiverev#(xs)) 2. Weak: ** Step 6.b:1: Ara WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) - Weak DPs: naiverev#(Cons(x,xs)) -> app#(naiverev(xs),Cons(x,Nil())) naiverev#(Cons(x,xs)) -> naiverev#(xs) - Weak TRS: app(Cons(x,xs),ys) -> Cons(x,app(xs,ys)) app(Nil(),ys) -> ys naiverev(Cons(x,xs)) -> app(naiverev(xs),Cons(x,Nil())) naiverev(Nil()) -> Nil() - Signature: {app/2,goal/1,naiverev/1,notEmpty/1,app#/2,goal#/1,naiverev#/1,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0 ,c_1/1,c_2/0,c_3/1,c_4/2,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {app#,goal#,naiverev#,notEmpty#} and constructors {Cons ,False,Nil,True} + Applied Processor: Ara {araHeuristics = NoHeuristics, minDegree = 1, maxDegree = 2, araTimeout = 8, araRuleShifting = Just 1} + Details: Signatures used: ---------------- Cons :: ["A"(2) x "A"(2)] -(2)-> "A"(2) Cons :: ["A"(11) x "A"(11)] -(11)-> "A"(11) Cons :: ["A"(15) x "A"(15)] -(15)-> "A"(15) Cons :: ["A"(0) x "A"(0)] -(0)-> "A"(0) Nil :: [] -(0)-> "A"(2) Nil :: [] -(0)-> "A"(11) Nil :: [] -(0)-> "A"(6) Nil :: [] -(0)-> "A"(15) Nil :: [] -(0)-> "A"(12) app :: ["A"(2) x "A"(2)] -(1)-> "A"(2) naiverev :: ["A"(11)] -(1)-> "A"(2) app# :: ["A"(2) x "A"(0)] -(3)-> "A"(0) naiverev# :: ["A"(15)] -(0)-> "A"(0) c_1 :: ["A"(0)] -(0)-> "A"(14) Cost-free Signatures used: -------------------------- Base Constructor Signatures used: --------------------------------- "Cons_A" :: ["A"(1) x "A"(1)] -(1)-> "A"(1) "Nil_A" :: [] -(0)-> "A"(1) "c_1_A" :: ["A"(0)] -(0)-> "A"(1) Following Still Strict Rules were Typed as: ------------------------------------------- 1. Strict: app#(Cons(x,xs),ys) -> c_1(app#(xs,ys)) 2. Weak: WORST_CASE(?,O(n^2))